

Manganese and tipburn

Gifty Kodua

Tipburn- inner and outer tipburn

- Transpiration is not even in the entire plant
 - less in young leaves
 - high in old/outer leaves
- Less transpiration leads to less nutrients transport = more inner tipburn
- High transpiration leads to more nutrient transport = more outer tipburn
- Rapid growth
 - less nutrients supplied
- Environmental factors strongly inducing tipburn
 - increased irradiance
 - high light sum
 - light spectral distribution

Manganese- Essential and Toxic

- Essential
 - for photosynthesis
 - part of antioxidative enzymes eg Mn-SOD
- Excess
 - Affects photosynthesis
 - increased production of ROS leading to oxidative damage.
 - competition with other nutrients

Light spectral distribution and intensity are important

- more infra-red radiation can increase transpiration (HPS)
- more red and blue light can cause stress (LED)
- high irradiance causes rapid growth= less nutrients

Extra Manganese (111ppm) in the nutrient solution

- Nutrient accumulation
- Growth
- Tipburn

Outer leaf

Inner leaves

Manganese (Mn) accumulation from lettuce (mg/kg)

Treatment	Young leaves		Inner part of old leaf		Edge of old leaf	
	+Mn	-Mn	+Mn	-Mn	+Mn	-Mn
HPS- 300 µmol m ⁻² s ⁻¹	665.4	14.95	2072	34.27	4421	194.7
HPS- 150 µmol m ⁻² s ⁻¹	1504.2		2230.5		8163	
LED- 134 µmol m ⁻² s ⁻¹	1054.3	30.54	1830.3	40.71	3706	168.36
LED- 206 µmol m ⁻² s ⁻¹	888	41.05	2136	124.9	4096	350.2

- Different in different parts of the leaf (transpiration)
- More at the edges of old leaves of treated plants
- Treated plants grown under HPS accumulated more Mn

Tipburn-Extra manganese vrs without extra manganese (HPS)

Tipburn-low light (LED)

- Mangan

+ Mangan

Tipburn- high light (LED)

- Mangan

+ Mangan

Conclusions

- The Mn content of inner leaves is much lower than the edge of outer old leaves and follows similar pattern of distribution as Ca
- Increased Mn content in the nutrient solution led to a higher concentration of this element in all parts of frillice lettuce analyzed.
- Foliar application of extra Mn did not affect plant growth nor tipburn severity (both inner tipburn and outer tipburn)
 either in low light or high light with LED.
- Increased Mn content in the inner leaves led to less inner tipburn.
- The effect of extra Mn in the nutrient solution on outer tipburn severity was dependent on lamp type and irradiance
 - Severity was high in plants grown in high irradiance with LED lamps